
 

 

 

	  

 

 

	  

Available Ph.D position in 

“Big data processing using sparse tensor representations” 
 

Research area: advanced mathematical methods applied to big data processing. 

Keywords: compressed sensing, tensor models, sparse tensor recovery, massive antennas, 
large-scale systems, parametric estimation theory, random matrix theory, Bayesian inference 

Profil of the applicant : An outstanding, self and highly motivated candidate is solicited with a 
strong interest in the field of advanced mathematical methods applied to signal processing. 
Candidates with 

- a solid background in probability, statistics and algebra, 

- excellent analytical, technical and problem solving skills,  

- good written, oral communication and organization skills, 

are encouraged to apply. Above all, the applicants must be motivated to learn quickly and work 
effectively on challenging research problems. 

Context of the proposal : The thesis will be conducted in collaboration between several national 
and international laboratories : 

1. Rémy Boyer (Associated Professor, HDR), L2S lab., Signals and Statistics Dep. 

2. Pascal Larzabal (Professor and lab. Director), ENS/Cachan, SATIE lab.  

3. Gérard Favier (Emeritus Research Director at CNRS), I3S lab.UNS/CNRS   

4. André L. F. de Almeida (Full Professor), UFC1, Teleinformatics Engineering Department 

The "massive/big data" processing challenge which is at the heart of the proposed thesis is a 
major research theme for the Paris-Saclay University and for the Labex (Laboratoire 
d'Excellence) DIGICOSME and UNC@SOPHIA where the L2S, SATIE and I3S are involved. 
Depending on the interest of the PhD student, a wide range of applications can be considered 
as for instance radioastronomy imaging based on very large arrays, cooperative wireless 
communications or bio-medical applications as the Magnetic Resonance Imaging where the 
involved laboratories have a strong and world-wide recognized expertise. The research work 
will be done in CentraleSupélec/L2S premises but travel opportunities for meeting with 
collaborators are encouraged. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Universidade Federal do Ceará, Brazil.	  



 

 

 

	  

 

 

	  

 

 
 
Subject: From Internet to large research infrastructures, the volume of data generated by our 
societies is continuously increasing. Such massive datasets which are characterized not only by 
their huge volume, but also their heterogeneity (multimodal data), precision (noisy data) and 
incompleteness (missing data), define what is now commonly named under the term of big data. 
In many disciplines and areas of application, data inherently has more than two axes of 
variation, also called modes, and can be arranged as tensors (i.e. multi-way arrays) [1-3]. Thus, 
tensor decompositions/models of multi-way datasets are particularly useful to represent and 
analyze big data. Large-scale tensor decompositions have received a particular attention very 
recently, due to their capability to handle a variety of mining tasks that are increasingly being 
applied to massive datasets [4-7]. Application fields are diverse, and include 
telecommunications, audio/video, medical imaging, chemometrics, and intelligent transport 
systems, to mention a few. Main advantages of tensor decompositions are: 

- Uniqueness properties under mild conditions. 
- Reduced parametric complexity in comparison with the dimensions of data tensors. 
- Existence of simple and efficient parameter estimation methods, like the alternating 

least-squares (ALS) algorithm. 

In this thesis, first from a fundamental perspective, different tensor models and algorithms will 
be studied for big data modelling and processing. Compact representations can be achieved by 
resorting to higher order singular value decomposition (HOSVD)-based models [8,24], tensor 
models with constraints [9], tensor train models [10,11], hierarchical Tucker models [12-14], and 
tensor networks [4]. In practice, low-rank approximations are crucial for reducing the data 
storage requirements and the processing complexity. This low-rank assumption is directly linked 
with the notion of rank of a tensor that, unlike matrices, is not unique since it depends on the 
considered decomposition. After an in-depth study of the different tensor decompositions and 
their uniqueness properties, the research work will be dedicated in the development of 
algorithms and analytical performance for recovering low-rank tensors from undercomplete big 
data, i.e. the completion of data tensors having missing entries under the low-rank assumption. 
This low-rank tensor recovery problem which can be viewed as an extension of the matrix 
completion and compressive sensing (CS) problems, arises in numerous real-world applications 
such as medical imaging, hyperspectral imaging, seismic data, and road traffic data, among 
many others. It consists in reconstructing randomly under-sampled low-rank tensors. In CS, 
under-sampled signals are recovered using their representation in a prespecified basis by 
means of a small number of nonzero coefficients, which defines the sparsity constraint. In 
tensor completion, the sparsity is played by the low-rank property. Various approaches exist for 
solving this problem depending on the choice of the considered tensor decomposition, of the 
cost function to be minimized under low-rank constraints, and of the used optimization 
algorithm.  

Application process : Please send your CV, transcripts of grades with qualifications and 
pertinent information,  as soon as possible, to R. Boyer (remy.boyer@l2s.centralesupelec.fr). 
	  



 

 

 

	  

 

 

	  

The tensor completion problem is linked with the tensor learning and tensor prediction problems 
which consist in using training data for estimating/predicting missing entries, with the aim  to use 
as few observations as possible. This is to be compared with a semi-supervised learning. 
Important examples of such problems are the recommender systems, like for instance the 
famous Netflix system for renting videos. Other applications concern the design of acquisition 
systems with the goal to reduce the number of measurements and consequently the storage 
requirement, and therefore to accelerate the acquisition, while ensuring good recovery 
performance. These problems are generally solved by minimizing the normalized mean square 
error (NMSE) under low-rank constraints. Two main approaches exist. One consists in 
combining an iterative gradient algorithm with repeated low-rank truncation, which leads to the 
class of iterative hard thresholding (IHT)-based methods [15,16]. A second approach is based 
on a reformulation of the problem as an optimization problem under low-rank constraint, and the 
application of an optimization technique, as for instance the alternating direction method of 
Lagrange multipliers (ADMM) [17,18]. 

Some link with machine learning (ML) can also be underlined via a formulation of the problem 
as a convex optimization under the constraint of low multilinear rank. 

Fundamental questions concerning recovery guarantees and the minimum number of data 
needed for tensor completion will be addressed. Moreover, closed-form expressions of Cramér-
Rao bounds of the mean square error of the parameter estimates will be established in 
presence of additive white Gaussian noise, as recently done for structured CP tensor 
decompositions [19]. Finally, distributed algorithms to compute tensor decompositions will be 
also developed to achieve reasonable performance in scenarios where the processing power 
can be distributed across a network of processing units, or sensors [20-23]. 

From an applications perspective, an important example is given by modern radioastronomy. 
With the emergence of a new generation of interferometers such as the LOFAR or the SKA 
(Square Kilometer Array), the old parabolic antennas are progressively abandoned and 
replaced by VLA (Very Large Arrays) composed by a large number of small antennas. For 
instance, the SKA is constituted by 2.5 million of antennas distributed over several countries. 
The data generated by the SKA is around of 14 exabyte/day collected as a large number of 
hyperspectral cubes, each having an estimated size of 80 TB. It is therefore crucial to develop 
new technologies to mitigate this data deluge. Additionally, increasing the number of small 
antennas also increases the probability that several antennas are defective. So, there is a need 
to manage efficiently the missing data problem and develop new prediction strategies.  

Another example is that of massive multiple-input multiple-output (MIMO) antenna systems, 
which is one of the key technologies currently under consideration for future fifth-generation 
(5G) wireless communication standards. Massive MIMO systems shall employ VLA of hundreds 
of antennas at the base station to serve many users at the same time. In this context, sparsity-
aware tensor-based methods can be useful for channel estimation, due to the 
multidimensionality (i.e. space, time, frequency, and polarization domains), as well as the low-
rank nature of the wireless channel.  
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