
MAGAZINE OF COMPUTING IN SCIENCE & ENGINEERING, VOL. ??, NO. ?, MONTH?? 2018 1

Exploiting activity for the modeling and
simulation of dynamics and learning processes

in hierarchical (neurocognitive) systems
Alexandre Muzy

Abstract—Although modeling and simulation depend on each other, there is no means to simplify formally models and at the same
time corresponding simulations. The activity concept elicits the coordination and the number of computations of a system highlighting
salient features about its dynamics. I follow here a neurocognitive example linking and applying definitions and algorithms based on a
(neuronal) activity measure. At the modeling level, activity state regions are identified dynamically. At the simulation level, I present how
to track the activity region at component level. At learning level, I finally present an activity-based search algorithm able to find the best
components (actions) into a network (a series of actions). Activity regions are used hierarchically from neurons to actions.

Index Terms—Activity concept, network coordination, spiking neuronal networks, cognition, modeling, simulation, learning.

F

1 INTRODUCTION

When considering complex systems, their simulation is
intrinsically linked to their modeling. In a feedback

loop, increasing modeling efforts reduces the search space
of possible simulations and conversely simulation results
guide modeling efforts. This feedback design loop is usually
informal and, as far as we know, very few efforts have
been dedicated to formalize and automate the relationship
between both simulation and modeling phases [1]. Here,
I present the activity concept, which intends to catch in a
formal and operational way the dynamics of computations
and how to account for it. It is expected that activity can
be shared during both simulation and modeling phases
virtuously detailing and automating each phase.

In mathematical systems theory [2], the structure of
dynamic systems has been set to model any kind of systems
(being either continuous, discrete or hybrid). These math-
ematical structures have been specified to computational
systems dealing explicitly with time (continuous or dis-
crete) [3]. To follow this diversity of possible models, several
definitions of the activity concept have been proposed [3].
As a metrics, the activity has been defined for continuous
systems (being a measure of the average accumulated vari-
ations of a continuous trajectory 1), or for discrete systems
(being a measure of the average accumulated number of
changes of a discrete trajectory). Based on these metrics, for
each kind of system, the simulation execution times were
reduced for various applications (fire spread [4], brain simu-
lation [5], Game of Life [6], etc.). Besides, the understanding
of system dynamics was enhanced in different domains:
describing the apparent equilibria in forest propagations

• A. Muzy is with Université Côte d’Azur, I3S, 2000, route des Lucioles -
Les Algorithmes - bt. Euclide B 06900 Sophia Antipolis - France.
E-mail: see http://www.i3s.unice.fr/muzy

Manuscript received November 23, 2018; revised December ??, 2018.
1. Based on this definition, a high-variation trajectory has a higher

activity metrics than a low-variation trajectory

whereas spatial activity occurs [6] or for attention-based
agents [7]. At learning level, activity-based algorithms, able
to find efficiently the best system structures (accounting for
their activity level), have been proposed [8], [9].

In the forest of activity applications and domains (math-
ematics, algorithms, applications) we present here a contin-
uum of activity definitions and implementations through
an example linking neuronal dynamics to the learning of
action sequences. A methodology is presented following
this bottom-up example with respect to activity, detailing:
(i) mathematical abstract models of neurons (in Section 2),
(ii) tracking algorithms and coordination mechanisms of
neuronal simulations (in Section 3), and (iii) a learning al-
gorithm for component-based networks and cognitive steps
based on neuronal networks (in Section 4).

2 DYNAMIC ABSTRACTION OF SPIKING NEURON
MODELS

Analyzing the dynamics of systems through their activ-
ity is a rough but unexpectedly powerful abstraction to
simplify/guide modeling. This abstraction is presented in
Figure 1, where a mathematical model MA is abstracted into
another model M ′A. The abstraction has to be achieved in
coherency with the state, input and output changes. Notice
that changes are indicated in red (being coherent with the
notion of discrete events that correspond to possible changes
of values). We will see here how one can benefit from
applying this kind of abstraction, to identify a first set of
mathematical model solutions.

Let us define more precisely how to measure the activity
of a segment (a map) ωt : [0, t[→ Z , where [0,t[ is the
duration of the segment and Z whatever set (either for the
inputs, states or outputs of the system). The activity of ωt is
a total variation norm (cf. Figure 2) :

A(ωt) = Σ∗|height between local extrema *|
+Σjump|height at jump|

(1)



MAGAZINE OF COMPUTING IN SCIENCE & ENGINEERING, VOL. ??, NO. ?, MONTH?? 2018 2

I A

i vz x

abstraction

Model

I

u w

Model

Fig. 1. Coherency between input-output-state trajectories. At the bottom,
a detailed discrete event system consists of active states z, u, v, w
(and input-output events) indicated in red as well as inactive states i, x
(and input-output non-events) indicated in gray. In/activity states depend
on the activity history of states and inputs. Both inputs-outputs and
states dynamics can be abstracted into abstract in/active input-output
trajectories (as we will see sharing a common property, i.e., a density of
events) and states (I and A) .

Fig. 2. Total variation norm. Extrema are indicated by green stars ∗ and
discontinuities (jumps) by the red dashed line −−.

The average activity is obtained simply dividing the ac-
tivity norm by the duration t of the segment: A(ωt) = A(ωt)

t .
The measure is valid for both continuous and discon-

tinuous trajectories. Discontinuities correspond to discrete
events. For neuronal electrical activity (cf. Figure 3), the
metrics can be applied either to continuous measurements
or to the equivalent spiking dynamics.

A state consists of a vector of variable values vi ∈ Vi,
where Vi is the range of values of variable vi. According to
the activity metrics, active and inactive states can then be
gathered into a state activity region2 [10]:

ARQ(t) = {q ∈ Q | Q =
∏
i

Vi,

∃vi, A(ωi,t) > 0}
(2)

Defining activity regions in states allows analyzing
dynamically the in/activity state space either for model-
ing purpose (considering the representation of the system
through its activated/inactivated states) or for simulation
purpose (tracking activity in real time to reduce execution

2. A corresponding inactivity region can easily be defined for null
activities. Hereafter, for simplicity reasons, only the activity regions
are presented. Furthermore, notice that activity regions are based on
activity metrics greater than zero but they can be also based on activity
metrics greater than a threshold as we will see.

PHPEUDQH�
SRWHQWLDO

DEVWUDFWLRQ

DFWLRQ�
SRWHQWLDO

VSLNH

�

W

W

QR�HYHQW

Fig. 3. Spikes vs. action potentials. At the bottom: Continuous mea-
surement of action potentials, each line being a different neuron. In
the middle: the electrical dynamics of the “membrane potential” of a
neuron with the “action potential” corresponding to the depolarization
and a “spike” (discrete event) abstraction corresponding to the true spike
of the action potential. At the top: Spiking dynamics equivalent to the
continuous measurement of action potentials.

times). To see how to apply activity regions to spiking
neurons let first present a model of spiking neurons.

Figure 4 describes graphically the mathematical model
of a spiking Leaky Integrate and Fire neuron model [11].
The activity region consists of all the membrane potential
values, m, having an activity greater than 0:

ARQ(t) = {active ∈ Q | Q = Vm,

A(ωvm,t) > 0}
(3)

Now that we dispose of a spiking neuron model, we
would like to be able to represent more biologically plausi-
ble bursting neurons. A bursty dynamics consists of “trains
of two or more spikes occurring within a relatively short
interval and followed by a [longer] period of inactivity” [12]
(cf. Figure 5).

To be able to define such models, let us apply the activity
metrics of Equation 1 to spikes. As the spikes have value 1,
the following density is obtained:

A(ωt) =
number of events in the segment

t
(4)

Previous activity regions can now be aggregated into a
higher level activity region where discrete event segments
ωi,t are concatenated into packets pi,t:

ARQ(t) = {q ∈ Q | Q =
∏
i

Vi,∃v,A(pi,t) > 0,

pi,t = ωi,t1 • ωi,t2 • . . . •ωi,t}
(5)

In a previous publication [11], we proved that spiking
neuron models can be abstracted into bursty neuron models
if input/output packets have an activity (or density) greater
than a density threshold D. With this condition, applying
aggregated activity regions to bursty neurons, it is obtained
the following activity region with new high level active and
inactive states A and I :

ARQB
(t) = {A ∈ Q | Q = Vm, A(pm,t) > 0} (6)



MAGAZINE OF COMPUTING IN SCIENCE & ENGINEERING, VOL. ??, NO. ?, MONTH?? 2018 3

...

...

...

...

...

inactive

active

States:

Inputs:

Outputs:

...

0

...

Fig. 4. Spiking abstract model. The input/output values XS and YS
of the model include null value φ. In input/output, each piece of the
trajectories is a continuous segment, where a spike is represented as
a discrete event followed by null values (indicated by different blue
and red colors) or simply null values (indicated in gray). The state
set QS is composed of membrane potential m ∈ R+

0 and active and
inactive Phases. The membrane potential accumulates input spikes. As
indicated in Equation 3, active (resp. inactive) phase corresponds to a
membrane potential m > 0 (resp. m = 0). If the potential is greater
than a threshold θ, then the neuron instantaneously fires an output
spike otherwise as long as no spike is received the membrane potential
decreases exponentially representing the membrane potential leak.

Fig. 5. Burst firing (modified from [12]). From top to down, intracellular
calcium injection leading to more and more to packets, each packet
having an activity greater than a density threshold D.

The dynamics of a bursty neuron is described in Figure 7.
Notice that now macro in/activity states A and I of bursty
neurons correspond to packets and non event input seg-
ments while micro in/activity states active and inactive of
spiky neurons corresponded to spikes and non event input
segments in Figure 4.

Now that we are able to map detailed activity states
inactive and active to higher active and inactive states A and
I , as well as to link these new abstract states to density
input-ouput segments, we obtain a new abstract model
as introduced in Figure 1. This new model is described
at network level in Figure 7, where neurons exchanging
packets are in active states A.

3 SIMULATION COORDINATION IN NEURONAL NET-
WORKS

In previous section, I showed how to set activity regions
(for state variables) and how to combine them hierarchically

Fig. 6. Bursting abstract model. A neuron receives and sends packet
segments pt of duration less than Tp. As indicated in Equation 6,
active phase A (resp. inactive phase I) corresponds to an activity
(density) of the membrane packet such thatA(pmembrane,t) > D (resp.
A(pmembrane,t) ≤ D).

Fig. 7. Neurons exchanging bursts. In red, neurons sending packets are
in an active state A whereas in gray are indicated the inactive neurons.

from spikes to bursts. A new higher composition level can
now be achieved thanks to component activity regions:

ARC(t) = {c ∈ C | qc ∈ ARQ(t)} (7)

We will see now how to track by simulation these
component activity regions as well as how to characterize
coordination inside these regions. Coordination is a major
issue in brain simulation. Usually, the brain is considered
to be a massively parallel computer where each neuron
processes in parallel electrical information [13]. However,
looking at the top spiking trajectories of Figure 3, spike time
occurrences appear to be all aperiodic and changing from
neuron to neuron. However, based on actual devices used to
measure neuronal activity, it is still not possible to measure
precisely the dynamics of a substantial number of neurons.
Either it is a very abstract measure over both large space and
duration (e.g., as in Magnetic Resonance Imaging (MRI), cf.
Figure 13, where it is not possible to distinguish neurons)
or tenth of neurons can be measured simultaneously using
probes. The best we can do to estimate the total number
of simultaneously firing neurons in the brain is to consider
the energetical consumption and the maximum firing rate
of neurons [14]. Then, the amount of simultaneously firing
neurons in the brain is estimated to only 1%. This estimation



MAGAZINE OF COMPUTING IN SCIENCE & ENGINEERING, VOL. ??, NO. ?, MONTH?? 2018 4

thus highly moderates the argument stipulating that the
brain is a massively parallel machine.

Beyond the parallel aspect of real neurons, the time
coordination of the computational model used should be
considered. For example, a modeler can simulate a discrete-
time numerical method for discretizing a partial differential
equation (as in Human Brain Project [15]), or he can use
a usual cellular automaton Although the parallel aspect
of computations does not reflect the actual coordination
of biological neurons, the corresponding simulation mech-
anisms developed can exhibit a large amount of parallel
computations.

Figure 8 shows on the left the different possibilities of
(neuron) component activity region evolutions according to
the computational model chosen. The red curve corresponds
to a computational model able to reflect the actual brain
activity amount (only 1% of the total number of neurons).
On the right, an usual sub-linear parallel simulation is
shown. Increasing the number of threads with respect to the
number of active neurons obviously leads to a maximum
speed-up due to the intrinsic sequential part of the program
as well as, when using central memory machines, to the
increasing waiting times of many threads trying to access
the central memory. It is clear that being able to focus on the
small amount of active neurons in the brain, few threads are
required to obtain interesting speed-up.

Fig. 8. Activity regions wrt. parallelization speed-up. On the left, the
number of active components in a simulation is indicated. The top
dashed line consists of a fixed activity region where all the components
(neurons) remain active during the simulation. The middle gray curve
consists of a sub-optimal computational model still focusing on a large
amount of active neurons. The bottom red curve consists of an optimal
computational model focusing on the actual amount of active neurons in
the brain (only around 1%). On the right, an usual sub-linear average
speed-up of a simulation parallelizing the computations of the active
region with an increasing number of threads is shown (for more infor-
mation about expected theoretical speed-up in simulation [16]).

Figure 9 shows the activity regions of two neurons
connected in a feedback loop. If active regions overlap is
a prerequisite for determining synchrony, it is not enough.
Only during the red part of the dynamics the neurons fire
together. Otherwise, their respective firing is asynchronous.

While purely synchronous algorithms are straightfor-
ward to implement, purely asynchronous algorithms re-
quire sophisticated implementations [17]. Purely asyn-
chronous algorithms can be implemented using a discrete
event approach. In latter approach, events drive the sim-
ulation. Components in these simulations then require a
high autonomy at control level. No control loop is used at
network level, rather it is the components that determine
themselves their state change according to the reception and

Fig. 9. A/synchronization of two neurons, 4 and 5, connected in a
feedback loop. While active phases overlap, a duration fraction of it
concerns a computational asynchrony or synchrony (in red).

sending of external events and their scheduling of internal
events. However, implementing discrete event algorithms
allows dealing explicitly with time and a/synchronization,
automatically focusing computational resources on activity
regions.

Figure 10 describes the autonomous coordination of
components: Either the components compute autonomously
their new state (case (1)), or their new state impacts causally
other components (case (2)), or finally interdependent com-
ponents change simultaneously state leading to the au-
tonomous detection of a synchronization by the component
(case (3))3.

The activity region of components ARC(t) (cf. Equa-
tion 7) can now be determined based on the state activity
region ARQ(t) = {self-change, send, receive, sync}.

Fig. 10. Activity tracking and activity regions wrt. event exchanges.
Three states are presented for the coordination of components: (1)
“self-changing” state in which components achieve independent self
state changes, (2) “sending” state in which components send their new
states to their influencees being in a “reiceiving” state, and (3) While
sending their new state the components receive a new state from their
influencers then going to the “synchronizing” state as described in the
red part of Figure 9.

3. All the cases can be implemented in Discrete Event System Speci-
fication [3].



MAGAZINE OF COMPUTING IN SCIENCE & ENGINEERING, VOL. ??, NO. ?, MONTH?? 2018 5

Figure 11 represents the intersynchronization and se-
quentialization in neuronal simulations. Remembering Fig-
ure 8 stipulating that most of the computations are sequen-
tial, the precision of time stamps makes natural the rareness
of precise synchronous state changes in biological systems,
making the discrete event sequential tracking an unexpect-
edely efficient simulation method from both execution time
and memory aspects [18], [19].

Fig. 11. Coordination in a neuronal network. Causality (indicated by
orange and yellow neurons) and intersynchronization (indicated in red)
of neurons are presented. In cases A and B two precise discrete event
time occurrences lead to a sequential (asynchronous) simulation of
neurons.

Disposing now of a means to determine the activity
region of components, Algorithm 1 describes the activity
tracking algorithm. Notice that the explicit update of the
component activity region makes possible parallelization
techniques easy to apply.

Algorithm 1 Activity tracking
init. activity region ARC(t = 0) // Possible parallelization
repeat

get senders from ARC(t) // Possible parallelization
route and compute their output events to final receivers
update ARC(t) with receivers // Possible parallelization
compute transitions of components in ARC(t)
schedule next transitions updating ARC(tnext)
t← tnext

until ARC(t) = {φ} or t ≥ tend

4 LEARNING A SEQUENCE OF ACTIONS

I presented how to use the activity metrics for modeling and
simulation. Activity has been used to combine hierarchically
spikes into bursts. I will show now how to use the activity
metrics to learn a sequence of actions (cf. Figure 12) [20].
The right sequence of actions to learn is for example “Move
hand to object A” → “Catch A” → “Drag A to position Y”
→ “Rotate A” → ... → “Drop A”. Let us assume that each
action component can be right or wrong. Stimuli (discrete
events) activate the series of action components unless a
wrong action is chosen thus stopping the activation chain
(e.g., choosing “Drag A to position X” instead of “Drag A
to position Y” in Figure 12). As it is not sending events,
a wrong action activated then exhibits less activity than a

right action component whereas a non activated component
has no activity.

Assuming that each component can be right or wrong
in the sequence, the question is then how to develop an
algorithm able to automatically select the right action com-
ponents based on their activity? To answer this question,
inspiration from neurosciences can be taken. Figure 13 de-
scribes the brain activity results of two motor task achieve-
ments (“move your left hand” and “move your right hand”).
The experiments aim at correlating the activity of neurons
to the task achievements. A direct assumption analogy in
simulation-based learning is to consider that local active
components during a correct behavior at global network
level have more chance to contribute positively to the be-
havior than other non active components.

To evaluate the behavior at network level, let us define
the score as the number of output events in a segment,
from right steps, accumulated during a simulation trial,
at network level N. The network segment is a vector of
component segments defined as ωN,t = (ω1,t, ..., ωn,t). The
score of a series of components at one trial thus consists of:

Strial(ωN,t) = number of output events in the segment
= number of consecutive right steps

The credit is defined as the correlation between task
achievement (the score) and local activity. The Simulated
Average Credit (SAC) of a component i consists of:4

SAC(i) = ΣtrialAtrial(ωi,t) ∗ Strial(ωN,t)

The credit value of a component over trials represents
the evaluation of the confidence that the component can be
selected to produce the expected behavior. Thus, although
the credit is attributed locally and automatically it is con-
sidered to provide a good evaluation for global behavior
achievement. At some trial, the activity-based search algo-
rithm can exploit this information to select presupposedly
good components with probability:

P(SAC(i)) =
SAC(i)

Σn
j=1SAC(j)

(8)

Where n is the number of candidate components evalu-
ated.

This approach was called Activity-based Credit Assign-
ment (ACA) [9] (cf. search algorithm in Algorithm 2) in
reference to the credit assignment problem identified by
Minsky [23] and Holland [24] and discussed in reinforce-
ment learning [25]. ACA finds the best network structure
accounting for component credit information.

Figure 14 presents the trial speed-up and activity reduc-
tion for unpredictable simulations at each bias trial number.
It appears that there is an optimal value of bias start, b∗,
to optimally reduce the number of trials (corresponding
to value σ∗), before being too early and after too late.
As in reinforcement algorithms, finding the optimal value
is not straightforword. Besides, it should be remembered
that each trial is an actual simulation where components

4. Notice that action activity is defined here at component level for
simplicity reasons but can also be defined hierarchically as the sum of
the activities of neurons realizing the action [9].



MAGAZINE OF COMPUTING IN SCIENCE & ENGINEERING, VOL. ??, NO. ?, MONTH?? 2018 6

(Diesmann et al., 1999)

Step1 Step2 Step3

Drag A 
to position X

Move hand 
to object A

Step2

Catch A

Step4

Rotate A 

(Muzy & Zeigler, 2018)

(Muzy et al., 2016)

(Muzy & Zeigler, 2017)

Step10

Drop A

...

Fig. 12. Neuronal realization of a series of 10 action components. On the left: The neuronal network [5] presented in the previous section. At
the bottom: The dynamics of a bursty neuron (in red) is described assuming that all the neurons in the network emit bursts between times t and
t+ TP [11]. At the top: Each network corresponds to an action component (whose decreasing activity is indicated from red, orange, yellow to black
(with no activity)) connected in a series of 10 components in a network [9]. On the right: The propagation is shown following an activation chain
(firing group picture from [21]) where each “group #” corresponds to a network activity and each line to a different neuron (the spiking activity of
the bursty neuron in red on the network on the left is indicated by a red line).

Algorithm 2 Activity-based Credit Assignment (ACA)
search: During a first exploration phase, the algorithm ran-
domly builds and simulates a network, and evaluates the
credit of components composing the network (for a number
of trials less than a bias value). Above the bias value, the
algorithm exploits the credit of components for biasing the
composition of the network.

repeat
if trial < bias then

randomly build a new network N // Exploration
else

greedly build a new network N choosing each compo-
nent ci with probability P(SAC(i)) // Exploitation

end if
simulate N and collect component credits
if N is the best then

exit from the loop
end if
trial + +

until trial = trialend

Fig. 13. Magnetic Resonance Imaging (MRI) activity wrt. motor task
achievements (from [22]). On the left, several patients have been told to
achieve the task: “Move your left hand”. Then, the red zones correspond
to the neurons particularly firing during this task achievement and thus
contributing to the task. The image on the right is similar for the task:
“Move your right hand”.

achieve real computations (activity). It has been shown that
ACA allows also to reduce the computational efforts while



MAGAZINE OF COMPUTING IN SCIENCE & ENGINEERING, VOL. ??, NO. ?, MONTH?? 2018 7

finding the solution more quickly [9]. The activity reduction
follows the trial speed-up increase, with an optimal value
α∗ corresponding to optimal bias value b∗.

Fig. 14. Trial speed-up σ (i.e., the ratio between the number of trials
using a random search vs. the number of trials using ACA search) vs.
activity reduction α (i.e., the ratio between the accumulated activity over
the trials using a random search vs. the accumulated activity over the
trials using ACA search).

5 CONCLUSION AND PERSPECTIVES

Based on previous activity successes [4], [5], [6], [8], [9], [11],
I proposed here a line of definitions integrating activity con-
cepts through a single neurocognitive example5. At modeling
level, the activity metrics has been used to aggregate dy-
namically system’s variable changes (membrane potentials
of neurons) into micro inactive and activity states (gathered
into activity regions). The activity-based states have been
then abstracted into macro activity regions in coherency
between input-state-output changes (of bursty neurons). At
simulation level, the definition of dynamic activity regions
has been used to focus computations and elicit coordination
between the components. Local activity a/synchronization
and related parallelization techniques can then be applied
to minimal (synchronized) activity regions. At learning level,
the bursty activity regions obtained at modeling level have
been used for (neuronal) networks abstracted into com-
ponents (representing actions) connected in an activation
chain. Based on the activity of each (action) component
and on the global network behavior evaluation, the ACA
algorithm has been used to find quickly the best network
structure (or series of actions) reducing also the activity
(thus the computational effort).

Concerning the activity concept, the main perspectives
can be discussed with respect to the elements of Figure 12.
First, the relationship between (neuronal) network activity
and (action) activity has to be formally set. Second, although
ACA simulation results have been generally presented for
whatever network structures (a/cyclic, probabilistic, etc.),
taking into account particular structures of the network
(series, parallel, or a composition of both) allows formal
analyses of the results (in terms of predicted activity, al-
gorithm efficiency, etc.) [20]. Third, ACA constitutes a new
means to solve collective structural credit assignment in
networks [25] in relation to the timing constraints from
(neuronal) networks to (action) components (using timed

5. The results presented here are applicable to any actitivity-based
networks. Therefore, I discuss these results at network and component
levels indicating into parentheses the neurocognitive link.

iterative specifications [3]). Based on the fine-grain coor-
dination described in Section 3, ACA can be used as an
integrative framework for building neuronal networks of
temporally constrained actions comparing the two current
main stream theories of asynchronous spikes [26] (generat-
ing networks with shortest temporal paths corresponding
to action temporal constraints) and synchronous [27] spikes
(generating networks with burst durations (as previously
described) corresponding to action temporal constraints). Fi-
nally, in the field of neuromorphic implementations activity-
based algorithms are faithful candidates to reduce energy
consumption and execution times [28].

ACKNOWLEDGMENTS

Many thanks to Jean-Pierre Briot, the “AI expert”, who
impelled me to rephrase activity definitions!

REFERENCES

[1] S. Klikovits, J. Denil, A. Muzy, and R. Salay, “Modeling frames,”
in Proceedings of MODELS 2017 Satellite Events, workshop on Model
Driven Engineering, Verification and Validation (MoDeVVa), 2017, pp.
315–320.

[2] M. D. Mesarovic and Y. Takahara, General systems theory: mathemat-
ical foundations. Academic press, 1975, vol. 113.

[3] B. P. Zeigler, A. Muzy, and E. Kofman, Theory of Modeling and Sim-
ulation: Discrete Event & Iterative System Computational Foundations.
Academic Press, 2018.

[4] A. Muzy, E. Innocenti, A. Aıello, J.-F. Santucci, P.-A. Santoni, and
D. R. Hill, “Modelling and simulation of ecological propagation
processes: application to fire spread,” Environmental Modelling &
Software, vol. 20, no. 7, pp. 827–842, 2005.

[5] A. Muzy, M. Lerasle, F. Grammont, V. T. Dao, and D. R. Hill,
“Parallel and pseudorandom discrete event system specification
vs. networks of spiking neurons: Formalization and preliminary
implementation results,” in High Performance Computing & Simu-
lation (HPCS), 2016 International Conference on. IEEE, 2016, pp.
925–934.

[6] A. Muzy, F. Varenne, B. P. Zeigler, J. Caux, P. Coquillard,
L. Touraille, D. Prunetti, P. Caillou, O. Michel, and D. R. Hill, “Re-
founding of the activity concept? towards a federative paradigm
for modeling and simulation,” Simulation, vol. 89, no. 2, pp. 156–
177, 2013.

[7] S. Mittal and L. Rainey, “Harnessing emergence: The control and
design of emergent behavior in system of systems engineering,”
in Proceedings of the Conference on Summer Computer Simulation.
Society for Computer Simulation International, 2015, pp. 1–10.

[8] P. Coquillard, A. Muzy, and F. Diener, “Optimal phenotypic
plasticity in a stochastic environment minimises the cost/benefit
ratio,” Ecological modelling, vol. 242, pp. 28–36, 2012.

[9] A. Muzy and B. P. Zeigler, “Activity-based credit assignment
heuristic for simulation-based stochastic search in a hierarchical
model base of systems,” IEEE Systems Journal, vol. 11, no. 4, pp.
1916–1927, 2017.

[10] A. Muzy, L. Touraille, H. Vangheluwe, O. Michel, M. K. Traoré,
and D. R. Hill, “Activity regions for the specification of discrete
event systems,” in Proceedings of the 2010 Spring Simulation Multi-
conference. Society for Computer Simulation International, 2010,
p. 136.

[11] A. Muzy, B. P. Zeigler, and F. Grammont, “Iterative specification
as a modeling and simulation formalism for i/o general systems,”
IEEE Systems Journal, vol. 12, no. 3, pp. 2982–2993, 2018.

[12] A. A. Grace and B. S. Bunney, “The control of firing pattern in
nigral dopamine neurons: burst firing,” Journal of neuroscience,
vol. 4, no. 11, pp. 2877–2890, 1984.

[13] J. Von Neumann, The computer and the brain. Yale University Press,
2012.

[14] P. Lennie, “The cost of cortical computation,” Current biology,
vol. 13, no. 6, pp. 493–497, 2003.

[15] H. Markram, “The human brain project,” Scientific American, vol.
306, no. 6, pp. 50–55, 2012.



MAGAZINE OF COMPUTING IN SCIENCE & ENGINEERING, VOL. ??, NO. ?, MONTH?? 2018 8

[16] J. Nutaro and B. Zeigler, “How to apply amdahls law to multi-
threaded multicore processors,” Journal of Parallel and Distributed
Computing, vol. 107, pp. 1–2, 2017.

[17] A. Muzy and B. P. Zeigler, “Introduction to the activity tracking
paradigm in component-based simulation,” Open Cybernetics &
Systemics Journal, vol. 2, pp. 30–38, 2008.

[18] A. Delorme, J. Gautrais, R. Van Rullen, and S. Thorpe, “Spikenet:
A simulator for modeling large networks of integrate and fire
neurons,” Neurocomputing, vol. 26, pp. 989–996, 1999.

[19] M.-O. Gewaltig, A. Morrison, and H. E. Plesser, “Nest by example:
an introduction to the neural simulation tool nest,” in Computa-
tional Systems Neurobiology. Springer, 2012, pp. 533–558.

[20] A. Muzy and B. P. Zeigler, “A conjecture from learning simulation
of series and parallel connections of components,” in THE 26TH
EUROPEAN MODELING & SIMULATION SYMPOSIUM, 2014,
pp. 550–557.

[21] M. Diesmann, M.-O. Gewaltig, and A. Aertsen, “Stable propaga-
tion of synchronous spiking in cortical neural networks,” Nature,
vol. 402, no. 6761, p. 529, 1999.

[22] M. M. Smith, K. E. Weaver, T. J. Grabowski, R. P. N.
Rao, and F. Darvas, “Non-invasive detection of high
gamma band activity during motor imagery,” Frontiers in
Human Neuroscience, vol. 8, p. 817, 2014. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnhum.2014.00817

[23] M. Minsky, “Steps toward artificial intelligence,” Proceedings of the
IRE, vol. 49, no. 1, pp. 8–30, 1961.

[24] J. H. Holland, “Studying complex adaptive systems,” Journal of
Systems Science and Complexity, vol. 19, no. 1, pp. 1–8, 2006.

[25] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[26] R. Van Rullen, R. Guyonneau, and S. J. Thorpe, “Spike times make
sense,” Trends in neurosciences, vol. 28, no. 1, pp. 1–4, 2005.

[27] W. Singer, “Neuronal synchrony: a versatile code for the definition
of relations?” Neuron, vol. 24, no. 1, pp. 49–65, 1999.

[28] X. Jin, M. Lujan, L. A. Plana, S. Davies, S. Temple, and S. B. Furber,
“Modeling spiking neural networks on spinnaker,” Computing in
Science & Engineering, vol. 12, no. 5, pp. 91–97, 2010.

Alexandre Muzy is research fellow at CNRS, in charge of the
Modélisation, Simulation & Neurocognition (MS&N) group. He is a spe-
cialist of discrete-event modeling and simulation and their application to
neurocognitive systems.


